| Technical comparsion between End Suction /Horizontal Split casing / Vertical Inline pump | | | | | | |--|--|--|--|--|--| | | | End suction pump
(ES) | Horizintal Split casing pump (HSC) | Vertical inline pump
(VIL) | | | Sno | Description | | | | Remarks | | 1 | Vibrations in the system | Present | Present | Vibrationless pump | Mechanical design efficiency always
depends on the system with least
vibration | | 2 | Life of mechanical seal | Average due to conventional design | Average | Best due to self lubrication design | Self lubrication design keeps the
Mechanical seal cool and clean | | 3 | Bearing life on pump
side | Average Life due to stress on the bearing because of horizonal rotation of the pum/motor shaft | Good life due to robust design and Inline fow of water | Bearing less pump | Bearlingless operation of Vertical Inline
pump helps reducing number of moving
parts in the pump assembly, hence
reducing mechanical failure. | | 4 | Floor space | Consumes floor space due to Motor placed horizontally | Very large foot print | 60% space saver due to Vertical motor design | Space saving enables the proper use of the space in the plant room | | 5 | Maintaince | High and tedeous | Very High Maintaince cost and time
consuming task | Virtually Zero maintainence | Low maintence cost of the Vertical inline
pump makes it a choice for the plant
room operator to opt for VIL pump | | 6 | Base Plate | Required | Required | Not required | VIL pump avoids baseplate ,reducing the foot print of the equipment and avoids related bolting issues. | | 7 | Mechanical seal
replacement | Time consuming and includes shaft re alignment | Most time consuming and envilves high technical skills | Easy outside mechanical sea l design offering quick replacement | Quick Mechanical seal replacement
ensures least down time for the water
circulation system. | | 8 | Interated VFD for secondary pumping | Not Possible | Not Possible | Possible | Integrated VFD on the pump avoids cabling on site and reduce Harmonics genearated in the system due to the reduction cable length between the VFD and the Motor load | | 9 | Flexible connectors | Required | Required | Not required | System with vibration requires flexible connectors , VIL being a vibration less system , doesn't require Flexible connectors | | 10 | Alignment of the pump and motor at site | Required | Required | Not required | Vertical design of the pumps discards the need of alignment of the pump at site. | | 11 | Shaft alignment on
change of mechanical
seal | Required | Required | Not required | Split coupled design in the vertical inline pump confims no disturbance to the alignment of the shaft during mechanical seal replacement | | 12 | Concerete foundation | Required | Required | Not required | VIL pump is a pipe supported design
hence doesn't requires any foundation
to be made for insatllation |